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FACTS OF OUR GROUP
B Research Group

B Publications

In the last five years, our group has published
over 10 papers in prestigious international
journals, (such as IEEE Transactions), and
more than 20 papers in SCI-indexed journals.

B Collaborating Institutions

NSFC: Completed 6 projects funded by
the NSFC (as the principal investigator)
and participated in 6 others.

Prof. Associate Prof.  Associate Prof.
Kaifeng Zhang Kun Yuan Ying Wang
5 Ph.D candidates and 22 Master students
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g Q"% SGCC: Undertaken more than 10 projects
B Research Focus: %@o-%g from the SGCC and related enterprises.
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— Unit commitment and economic dispatch
. Frequency control N AR l NARI: Undertaken and collaborated on
Ea R EE[F] numerous projects with NARI

NARI GROUP CORPORATION

— Power market
— Renewable energy
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Nanyang Zhu received his master's degree in
Electronic  Information from  Jiangnan
University, Jiangsu, China, in 2019. He is
currently pursuing his Ph.D. at Southeast
University, Nanjing, China. His research
interests include artificial intelligence, new
energy power prediction, and knowledge-
based semantic information grid scheduling
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BSelf-developed software

Deep learning application framework (2021-Now)
Background: the aim is to make deep learning as convenient for
researchers in various fields as using Word.

Functions: completing modules for data loading, training, various
embedded tricks, and model construction.

significance: there are numerous and messy codes related to deep
learning. Our framework can be flexible to any tasks, enabling

researchers to easily meet their requirements

ChatSEU project at Southeast University(2022-Now)
Background: to build a ChatGPT with distinctive features of
Southeast University.

Functions: besides the ChatGPT, we added search platform
embedded semantic question-answering regrading the internal

information of Southeast University.



Topic 1: Unsupervised Learning-Based Power
forecasting of Renewable Energy for Single Plant

B Background
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For power forecasting of Single renewable plant, I R R S T N B A A ,

there exists following forecasting paradigms. G historical wind power.--------- 4 future—>

1. Only using only historical power data gl

2. Using historical power data along with e e o s ey
its related meteorological data (not work well) P meteorological datages Zaved B

3. Using historical power data and NWI data L e ey .

Or, incorporating Empirical Mode Decomposition, etc. (o] historical wind power--------- 0l—future—>

NWP
Summary

all the models seek to enhance the capability of capturing feature representations
from historical data, thereby gaining better insight into future wind power.
Challenge

Our work Unsupervised Learning-Based Power forecasting of Renewable Energy for Single Plant!

Zhu, N., Dai, Z., Wang, Y., & Zhang, K. (2023). A contrastive learning-based framework for
wind power forecast. Expert Systems with Applications, 230, 120619.



Topic 1: Unsupervised Learning-Based Power
forecasting of Renewable Energy for Single Plant
B Our work

Generally, traditional models optimize the parameters of the networks by future data using MSE Loss,
called future data-guided optimization. This practice may lead to weak feature representations. Therefore,
we propose a space distance-guided optimization based on contrastive learning.
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1. Future data-guided optimization 4N O~
Taking a real-world scenario as an example, -~ and ° in Fig. 1 are quite s Ss
& 257 & q

close in trend and can be considered as “similar days”, but the follow-up \\_ c /\Aj
trends of them exist a larger difference, just shown by ¢ and d in Fig. 1. TP S A
2. space distance-guided optimization VNG |
The space distance-focused optimization can control the feature distribution X d /i /
of similar sequences and non-similar sequences by optimizing the N
parameters of the network architecture, and its loss function is contrastive
loss. Fig. 1

For example, in Fig. 1 are all actual wind power sequences (S, and S, |

are similar in trend; S, and S, are not).

If only using future data points (c and d ) to optimize the parameter of the
network architecture by future power-focused optimization, the distance of

in the feature space can be seen in Fig. 2(a). Consequently, to pull

and . closer and ©, and . farther in the feature space, just seen in Fig. 2(b), we
use the space distance-focused optimization to further optimize the feature
distance of similar and non-similar sequences on the basis of space distance- (a) (b)
focused optimization. Fig. 2




Topic 1: Unsupervised Learning-Based Power
forecasting of Renewable Energy for Single Plant

B Our work
How to do:

we propose a framework based on contrastive learning (
a pre-training stage and a regression stage.

B Pre-training stage: pre-training stage includes
and

1. feature extraction module

This module is to map the row batch elements into latent space based on
any network architectures, including LSTM, TCN, Transformer, etc.

2. data construction module

It generate two extra matrices (F* and F-) based on F according to “Similar
days”. F* are positive feature matrices that are similar to F, and F- is a collection of
negative feature matrices that are not similar to F;

3. loss optimization module

It uses contrastive loss (space distance-guided optimization) to continuously
optimizing the parameters of the network architecture in the feature extraction
module, enabling to reduce the space distance between positive pair (F and F*) and
increase the space distance between negative pairs (F and F)

B Regression stage

To take full use of the well-learned parameters of the network architecture in
the pre-training stage, the regression stage needs to take these parameters as initial
parameters of feature extraction network, and further fine-tune these parameters
using mean squarer error (MSE) loss

), consisting of
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Continuously optimize
parameters of feature
extractor module

Loss optimization module
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Topic 1: Unsupervised Learning-Based Power

forecasting of Renewable Energy for Single Plant

B Our work
Case studies
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To show that the propose framework can be suitable for various network architectures and
can outperform the initial basic network architectures, we apply it for various classic
network architectures, including LSTM, CNN, and Transformer, named
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B Conclusion

This paper proposes a new wind power forecast framework based on contrastive learning, and fills the
research gap of wind power forecast using self-supervised learning. The proposed framework consists of the
pre-training stage and the regression stage, and its objective is to obtain a better prediction performance for
wind power. The pre-training stage uses contrastive learning to extract more precise feature matrices for
similar wind power sequences, and then the regression stage constructs a wind power forecast model on the
basis of these well-learned feature matrices.

. We perform comprehensive comparative analyzes to
demonstrate the effectiveness of our proposed framework. The results of Section 4.2 indicate that the proposed
framework is widely suitable for various basis network, and the RMSE, MAE, and R2 can outperform the
initial basis network architectures by a mean increase rate of 8.94%, 8.5%, and 8.5%, respectively, among 1-6
hour forecast steps. Additionally, for a network architecture with contrastive learning, the distance of similar
sequences is closer in a feature space and the non-similar sequences is farther apart compare to its absence for
the network architecture. The results of Section 4.3 indicate that the proposed framework is more powerful
than other classic state-of-the-art schemes using different deep learning networks for different forecast steps.
Sensitivity analysis of the temperature coefficient used in the contrastive loss can further present the
effectiveness of the proposed framework.



Topic 2: Power forecasting of renewable energy clusters

B Background
For power forecasting of renewable energy clusters, it is general to cast

renewable power plants (RPPs) into a graph-like structure for capturing
the correlations among them.

______________________________

where U is the set of nodes,
and E is the set of edges

E— i o : LD
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TR E RS information aggregation
each plant to be the correlations of the for power forecasting
node in a graph edges in the graph :
using GNN-based models

Challenge
how to accurately capture the correlations among nodes in the graph structure
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Topic 2: Power forecasting of renewable energy clusters

B Adjacency matrix

Generally, we describe the correlations among nodes using adjacency matrix.

there are to calculate adjacency matrix in a graph:

1. physical distance: calculating the correlations among nodes based on geographical
location (Geographic Coordinate System)

2. statistical distance: euclidean distance, correlation coefficient, pearson correlation distance,
et al.

3. Learning a adjacency matrix in networks!: calculating the asymmetric matrices to be the

graph adjacency matrix

Limitations In RPPs, due to different arrival time of atmospheric flow among RPPs, there exists
. Nonetheless, all existing graph-based models ignore this point when constructing

adjacency matrix

Our work Research on power forecasting techniques of renewable energy clusters
considering Lead-Lag characteristics

[1] Wu, Z,, Pan, S., Long, G,, Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: Multivariate time series forecasting with graph neural
networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763).



Topic 2: Power forecasting of renewable energy clusters

BOur Work?

Basic Definitions--- Multiple temporal granularity groups(TGGs)

TGGs : power data in each group is distributed across
distinct seconds or minutes in an hour

Reference TGG and its neighboring TGGs: the
reference TGG is characterized by time steps aligned
with the hour; the neighboring TGGs are positioned
forward or backward by a multiple of L in the same
hour with the reference TGG.

We can seen that there is
between the reference TGG and its neighboring TGGs
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A generalized presentation of
TGGs with resolution K

An example of TGGs with 15-
minute temporal resolution and

45-minute lead-lag magnitude

[2] Zhu, N., Wang, Y., Yuan, K., Yan, J,, Li, Y., & Zhang, K. (2024). GGNet: A novel graph structure for power forecasting in
renewable power plants considering temporal lead-lag correlations. Applied Energy, 364, 123194.
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BOur Work?
Proposed graph structure (3 plants to be example
12 P
RPP.: doie , group S tradition
1° ¢ g ————— 4§ Reference TGG graph structure
{ group S
RPP2 e T ’ Referencs TGG
| group S
RPP3 R T40'0 Reference? TGG
RIPIP, 28 Reference TGG and its
neighboring TGGs proposed
graph structure
IRIPIRS, i Reference TGG and its
neighboring TGGs
RIRIRE = Reference TGG and its another quespfon:
neighboring TGGs

due to the dynamic nature of atmospheric flow,
the magnitude and direction of the lead-lag
correlation between any two RPPs are uncertainty
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BOur Work?
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how to learn adjacency matrix for the proposed graph structure: GGNet

GLNet: GLNet models the uncertainty of the lead-lag
correlations with magnitudes and directions in a form
of dynamic feature matrix.

GPNet: GPNet uses a gate mechanism to update the
weighted coefficients of the GLNet in a iteration
process, and obtain final adjacency matrix

GNNet: GNNet use GNN-based models to conduct
information aggregation between the adjacency
matrix and the data of RPPs with the reference
TGG, and subsequently outputs power forecasting
of RPPs.
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Topic 2: Power forecasting of renewable energy clusters

BOur Work?
Case studies------ Datasets, Training settings

Datasets: the data used in this paper are from a region in North China, including 8 wind power plants and 9
photovoltaic power plants. Specifically, the data of each RPP presents 15-minute resolution and contains two
years from January 1, 2019 to December 31, 2020. The data is split into a training dataset spanning from January
1, 2019 to October 30, 2020 and a testing data spanning from October 30, 2020 to December 31, 2020.
Subsequently, TGGs with a reference TGG and its related TGGs are obtained based on the method in the Section
2.1 for both the training dataset and the testing dataset. Finally, the TGGs in the training dataset are used to
train the proposed model for the proposed graph structure, and the TGGs in the testing dataset is used to
evaluate the performance of the proposed model.

Training Settings: during the training process, the
training dataset is used to train the proposed model
using Pytorch on a 3080 Ti GPU with 64GB RAM, with
optimized parameters learned by the backpropagation-

Danatica based algorithm Adam optimizer (learning rate: 2e-5;
e batch size: 64; loss function: mean square error (MSE)
@ loss) [58]. During the testing process, the testing dataset

is used to evaluate the trained model on a 16 GB RAM-
equipped CPU.



Topic 2: Power forecasting of renewable energy clusters

BOur Work?
Case studies------Comparing SoTA models

SoT'As: ARIMA, RF, RNN-GRU, LSTNet, DCRNN, StemGNN, MTGNN.

The EMSEw, MAEy, and CORRy of the proposed model and SpTA models for wind power plants+

Stephe <  ARIMA< RF+ 1;11; LSINet¢ DCRNN® StemGNN< MTGNN< GGNet®
RMSEw 0360¢ 0438 0428  0391¢  0504¢  0481¢  0390¢  0.300¢
1  MAExe 0330¢ 0300¢ 0280¢ 02200 0325¢  0302¢  0221¢  0.186¢
CORRw 0.880¢ 0851¢ 0903¢  0922¢  0871¢ 0881 0923  0.934¢
RMSEwe 0.673¢ 0.380¢ 0.661¢ 06260 0768  0723¢  0.601¢  0.506¢
2¢  MAEwe 0475¢ 04119 04350 03690 05040  0486° 0339  0.324¢
CORRye 0.764¢ 0.733¢ 0.773¢  0800¢  0702¢  0.733¢ 0818  0.805%
RMSEye 0950¢ 0.671¢ 0764 0778 0898  0888¢  0.737¢  0.606¢
3¢ MAEwe 06487 04920 05320 04840 06020 03930 04360  0.3990
CORRy 0397+ 0.637¢ 0.703¢ 0601 03930  0.602¢  0.727¢ 0684~
RMSEwe 12327 0.733¢ 00360 08872 10040  0987¢ 08467  0.699~
4¢  MAEwe 0.792¢ 0354¢ 06619 0568 06840 06899 03370  0.493¢
CORRy¢ 0404¢ 0332¢ 0.537¢ 0598  0481¢  0.305¢  0.641¢ 0590+

The EMSEx, MAEw, and CORREy of the proposed model and 3gTA for photovoltaic power plants+
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Stephs ¢  ARIMA¢ RF# I:;I:’i: L5TNet¢ DCRNN+ StemGNNe MTGNN< Me‘:
RMSEw' 0.343¢ 0333¢  0700¢  0387¢  0387¢  0575¢ 0339 02270
1¢  MAEwe 0241¢ 0210¢ 03519¢  0251¢  0270¢  0353¢ 01647 01370
CORRw 0.852¢ 0890¢ 07167  0820¢ 09232  (0780¢ 09397  (.951¢
RMSEne 0.501¢ 0.334¢ 0960¢  0623¢  0363¢  0725¢ 05047  0.342¢
2¢ MAEy" 03640 03490 06400  0367¢ 04060  0464¢ 023 0.214¢
CORRyw 06640 0684¢ 0448¢ 08260 0840¢  0682¢ 08677  0.891¢
RMSExe 0.632¢ 0653¢ 0890¢ 0823 0391¢  0721¢ 06069  0.396¢
3¢ MAExw 0567¢ 0460¢ 0662¢  0652¢ 0418¢  0487¢ 03090  0.268¢
CORRyw 04560 0463¢ 0379¢  0511¢ 0822¢ 0688 08099  0.856¢
RMSExs 0.637¢ 0.734¢ 11960  106¢  0700¢  0864¢ 06787  0.4220
40 MAEwe 05460 0.552¢ 0.829¢  0724¢  0.546¢ 03578 03379 02940
CORRx" 0.204¢ 0.180¢ 0215¢  0347¢ 0707¢ 03595 0763  0.825¢

L TR T T



Topic 2: Power forecasting of renewable energy clusters

BOur Work?
Case studies------ Ablation studies
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P-GGNet: using a predefined adjacency matrix used in DCRNN to replace the module GLNet;
S-GGNet: abandoning the GPNet module, and just using the feature matrix obtained from

GLNet module to generate adjacency matrix.

1 step 1 step 1 step

—— GGNet

P-GGNet |
2 st — S-GGNettep | 2st

—— GGNet
P-GGNet |
—— S-GGNettep | 2 st

—— GGNet
P-GGNet
—— S-GGNettep

The radar chart of RMSEN, MAEN, and CORRN of GGNet,
P-GGNet, and S-GGNet for wind power plants.

1 step 1 step 1 step

—— GGNet
P-GGNet
i —— scaNetitep | 2t

—— GGNet
P-GGNet
—— S-GGNet’tep 2t

—— GGNet
P-GGNet
—— S-GGNet’tep

The radar chart of RMSEN, MAEN, and CORRN of GGNet,
P-GGNet, and S-GGNet for photovoltaic power plants.
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Topic 2: Power forecasting of renewable energy clusters

BOur Work?

Case studies------ Parameter sensitivity analysis

Number of TGGs: the TGGs’ Set (S-45, S-30, S-15, S0, S15, S30, S45) in Fig. 1 is used for the proposed model.
Apart from the used Set, the experiment of different desired lead-lag magnitudes is performed, including 45-
minute leading magnitude (number of TGGs=3), 45-minute lagging magnitude (number of TGGs =3), 15-minute
lead-lag magnitude (number of TGGs =2), and 30-minute lead-lag magnitude (number of TGGs= 4), and the used
Set (number of TGGs= 6).

0.8 0.6 ——— et
05 ] 08 Set 2 04 03 08 Set2
z
g gos £ - et 3 i z 06 S Setd
E 0.4 s 8 Set 4 S g 0.2 o Set 4
0 04 B Used Set 202 004 B Used Set
0.2 ‘ ‘ 02 01 ‘ 02
0.0 LA 0.0  NANIL NCNAR REEER il i IIENNCHEW NN
1 2 3 4 1 2 3 4 00 2 3 4 0075 2 3 4 0075 2 3 4 007 2 3 4

forcast step/hour forcast step/hour forcast step/hour forcast step/hour forcast step/hour forcast step/hour

The change of RMSEN, MAEN, and CORRN with different TGG  The change of RMSEN, MAEN, and CORRN with different TGG
combinations for wind power plants. combinations for photovoltaic power plants.



I

I
L SOUTHEAST UNIVERSITY

Topic 2: Power forecasting of renewable energy clusters

B Our Work?
Conclusion

This paper proposes a novel dynamic graph structure using multiple TGGs for the power prediction of RPPs. The
proposed graph structure can reflect the lead-lag characteristics among RPPs caused by the atmospheric flow, thereby
obtaining better correlation representations among RPPs. The proposed model contains the GLNet, and the GPNet, and
the GNNet. The former two modules with the GLNet and GPNet can obtain an optimal adjacency for representing the
proposed graph structure, and the GNNet can aggregate information on RPPs for power predictions.

Multiple experiments are conducted on wind power plants and photovoltaic power plants to demonstrate the
effectiveness of the proposed model. Specifically, the results of the section “Comparing state-of-the art end-to-end models”
demonstrate the superior performance of the proposed model in 1-4 hour power prediction for RPPs, surpassing other
state-of-the-art models in terms of RMSEN, MAEN, and CORRN. In wind power plants, the RMSEN and MAEN of the
proposed model can obtain the best results with an average decreased of 22.92% and 13.18%, respectively, among 1 to 4
hours prediction steps. Particularly for 1 hour prediction step, the proposed model shows more significant improvement
in the 1-hour prediction step, with 0.300 for RMSEN, 0.186 for MAEN, and 0.934 for CORRN, respectively; Similarly for
photovoltaic power plants, the results of the proposed model can obtain superior results than the compared models, with
average decrease by 48.95% for RMSEN, 18.75% for MAEN, and 8.56% for CORRN than the best results among the
compared models, respectively. The results of the section “Ablation study” demonstrate that all the designed modules are
of great significance for the proposed model. If one of the modules is replaced by other components, the performance of
the proposed model shows a great decline, with about decreased of 23.20% for MAEN, 18.69% for RMSEN, and 23.45%
for CORRN for all prediction steps. These results demonstrate that the proposed graph structure can ensure remarkable
prediction accuracy for power of RPPs.
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